JIRA ACR-NEMA

Digital Imaging and Communications in Medicine (DICOM)

Supplement 9 Multi-byte Character Set Support

PART 5 Addenda

PART 3 Addenda

PART 4 Addenda

PART 2 Addenda

PART 6 Addenda

STATUS: Final Text - November 18, 1995

This is a draft document - do not circulate, or quote except with the approval of NEMA.

Scope and Field of Application

- 2 This Supplement to the DICOM standard specifies a method to handle multi-byte character
- 3 sets, such as Japanese character sets.
- 4 This Supplement includes a number of Addenda to existing Parts of DICOM.
- 5 1. PART 5 Addenda
- 6 2. PART 3 Addenda
- 7 3. PART 4 Addenda
- 8 4. PART 2 Addenda
- 9 5. PART 6 Addenda

Digital Imaging and Communications in Medicine (DICOM)

PART 5 Addenda:

Multi-byte Character Set Support

4

3

1

5 Items to be added or changed in PS 3.5: Data Structures and Encoding

Item #1

Add the following to Section 2 Normative references:

- 6 ISO/IEC 2022:1994 Information technology Character code structure and extension
- 7 techniques
- 8 JIS X 0201-1976 Code for Information Interchange
- 9 JIS X 0208-1990 Code for the Japanese Graphic Character set for information interchange
- JIS X 0212-1990 Code of the supplementary Japanese Graphic Character set for information
 interchange

Item #2

12

Add Section 3.11 to Section 3 Definitions, and remove sections 3.10.4 CODED CHARACTER.

3.11 Character handling definitions

- 13 This part of the standard makes use of the following terms defined in ISO/IEC 2022:1994:
- a) Coded character set; code
- b) Code extension
- 16 c) Control character
- d) To designate
- e) Escape sequence
- 19 f) Graphic character
- 20 g) To invoke

Item #3

Make the following correction to Section 4 Symbols and abbreviations:

JIRA "Japanese Industry Radiology Apparatus" should read

JIRA <u>Japan Industries Association of Radiation Apparatus</u>

Item #4

1

Make the following changes to Section 6 Value encoding:

2 6 Value encoding

- 3 A Data Set is constructed by encoding the values of Attributes specified in the Information
- 4 Object Definition (IOD) of a Real-World Object. The specific content and semantics of these
- 5 Attributes are specified in Information Object Definitions (see PS 3.3). The range of possible
- data types of these values and their encoding are specified in this section. The structure of a
- 7 Data Set, which is composed of Data Elements containing these values, is specified in Section
- 8 7.
- 9 Throughout this part, as well as other parts of the DICOM Standard, Tags are used to identify
- both specific Attributes and their corresponding Data Elements.

11 6.1 Support of character repertoires

- 12 Values that are text or character strings can be composed of Graphic and Control Characters.
- 13 The Graphic Character set, independent of its encoding, is referred to as a Character
- Repertoire. Depending on the native language context in which Application Entities wish to
- exchange data using the DICOM Standard, different Character Repertoires will be used. The
- 16 Character Repertoires supported by DICOM are defined in ISO 8859.

Item #4-1

Add the following paragraph:

- 17 In addition, DICOM supports the following Character Repertoires for the Japanese language:
- JIS X 0201-1976 Code for Information Interchange
- JIS X 0208-1990 Code for the Japanese Graphic Character set for information interchange
- JIS X 0212-1990 Code of the supplementary Japanese Graphic Character set for
- 21 information interchange

6.1.1 REPRESENTATION OF ENCODED CHARACTER VALUES

- As defined in the ISO Standards referenced in this section, byte values used for encoded
- 2 representations of characters are represented in this section as two decimal numbers in the
- 3 form column/row.
- 4 This means that the value can be calculated as (column * 16) + row, e.g., 01/11 corresponds to
- 5 the value 27 (1BH).
- 6 NOTE— Two digit hex notation will be used throughout the remainder of this standard to
- 7 represent character encoding. The column/row notation is used only within
 - Section 6.1 to simplify any cross referencing with applicable ISO standards.

Item #4-2

8

Modify the following table and add a note:.

- 9 The byte encoding space is divided into four ranges of values:
- 10 <u>CL</u> bytes from 00/00 to 01/15
- 11 <u>GL</u> bytes from 02/00 to 07/15
- 12 CR bytes from 08/00 to 09/15
- 13 <u>GR</u> bytes from 10/00 to 15/15
- NOTE— ISO 8859 does not differentiate between a code element, e.g. G0, and the area
- in the code table, e.g. GL, where it is invoked. The term "G0" specifies the
- code element as well as the area in the code table. In ISO/IEC 2022 there is a
- clear distinction between the code elements (G0, G1, G2, and G3) and the areas
- in which the code elements are invoked (GL or GR). In this Standard the
- nomenclature of ISO/IEC 2022 is used.

Item #4-3

Modify the first sentence of the following paragraph:

- 20 The Control Character set C0 shall be invoked in CL and the Graphic Character sets G0 and
- 21 G1 in GL and GR respectively. Only some Control Characters from the C0 set are used in
- 22 DICOM (see Section 6.1.3), and characters from the C1 set shall not be used.

23 6.1.2 GRAPHIC CHARACTERS

- 24 A Character Repertoire, or character set, is a collection of Graphic Characters specified
- 25 independently of their encoding. In DICOM all references to Character Repertoires are made
- via the ISO registration number specified in ISO 2375 and are of the form 'ISO-IR xxx'.

- 1 Many standards, including ISO 8859, specify Coded Character Sets. Coded Character Sets are
- 2 Graphic Character sets along with the one to one relationship between each character of the set
- 3 and its coded representation.

4 6.1.2.1 Default character repertoire

- 5 The default repertoire for character strings in DICOM shall be the Basic G0 Set of the
- 6 International Reference Version of ISO 646:1990 (ISO-IR 6). See Annex E for a table of the
- 7 DICOM default repertoire and its encoding.
- 8 NOTE— This Basic G0 Set is identical with the common character set of ISO 8859.

6.1.2.2 Extension or replacement of the default character repertoire

Item #4-4

9

Replace the first paragraph:

- DICOM Application Entities (AEs) that extend or replace the default repertoire convey this information in the Specific Character Set (0008,0005) Attribute.
- NOTE— The Attribute Specific Character Set (0008,0005) is encoded using a subset of characters from ISO-IR 6. See the definition for the Value Representation (VR) of Code String (CS) in Table 6.2.1.
- 15 For Data Elements with Value Representations of SH (Short String), LO (Long String), ST
- 16 (Short Text), LT (Long Text), or PN (Person Name) the default character repertoire may be
- extended or replaced (these Value Representations are described in more detail in Section 6.2).
- 18 If such an extension or replacement is used, the replacement or extension shall be identified in
- the Attribute "Specific Character Set" of the SOP Common Module (0008,0005) (see PS 3.3),
- and the fact shall be stated in the Conformance Statement. PS 3.2 gives conformance
- 21 guidelines.

Item #4-5

Remove note 2 and renumber :

- NOTES— 1. Preferred repertoires as defined in ENV 41 503 and ENV 41 508 for use in Western and Eastern Europe, respectively, are: ISO-IR 100, ISO-IR 101, ISO-IR 144, ISO-IR 126. See Section 6.1.2.3.
- 2. Information Object Definitions using different character sets cannot rely —
 per se on lexical ordering or string comparison of data elements represented
 as character strings. These operations can only be carried out within a given
 character repertoire and not across repertoire boundaries.

6.1.2.3 Encoding of character repertoires

Item #4-6

1

Modify Section 6.1.2.3 as follows::

- 2 The 7-bit default character repertoire can be replaced for use in Value Representations SH,
- 3 LO, ST, LT, and PN with one of the single-byte codes defined in PS3.3.
- 4 NOTE— <u>This replacement character repertoire does not apply to other textual Value</u> 5 <u>Representations (AE and CS).</u>
- 6 The replacement character repertoire shall be specified in value 1 of the Attribute Specific
- 7 Character Set (0008,0005). Defined Terms for the Attribute Specific Character Set are
- 8 specified in PS3.3.
- NOTES— 1. The code table is split into the GL <u>area which supports a 94 character set only</u>
 (bit combinations 02/01 to 07/14) plus SPACE in 02/00 and the GR area <u>which</u>
 supports either a 94 or 96 character set (bit combinations 10/01 to 15/14 or

 12 10/00 to 15/15). The default character set (ISO-IR 6) is always invoked in the
 GL area.
- 2. All character sets specified in ISO 8859 include ISO-IR 6. This set will always be invoked in the GL area of the code table and is the equivalent of ASCII (ANSI X3.4:1986), whereas the various extension repertoires are mapped onto the GR area of the code table.
 - 3. The 8-bit code table of JIS X 0201 includes ISO-IR 14 (romaji alphanumeric characters) as the G0 code element and ISO-IR 13 (katakana phonetic characters) as the G1 code element. ISO-IR 14 is identical to ISO-IR 6, except that bit combination 05/12 represents a "\vec{\pi}" (YEN SIGN) and bit combination 07/14 represents an over-line.

Item #4-9

18

19

2021

22

Modify the first sentence of the following paragraph.

- 23 Two character codes of the single-byte character sets invoked in the GL area of the code table,
- 24 02/00 and 05/12, have special significance in the DICOM Standard. The character SPACE,
- 25 represented by bit combination 02/00, shall be used for the padding of Data Element Values
- 26 that are character strings. The Graphic Character represented by the bit combination 05/12,
- 27 "\" (BACKSLASH) in the repertoire ISO-IR 6, shall only be used in character strings with

- Value Representations of ST and LT (see Section 6.2). Otherwise, the character code 05/12 is used as a separator for multiple valued Data Elements (see Section 6.4)
- NOTE— When the value of the Attribute Specific Character Set (0008,0005) is either "IR 13" or "ISO 2022 IR 13", the graphic character represented by the bit combination 05/12 is a "\mathbb{Y}" (YEN SIGN) in the character set of ISO-IR 14.
- 6 The character DELETE (bit combination 07/15) shall not be used in DICOM character strings.

Item #4-10

Replace following paragraph.

- 7 The replacement Character Repertoire specified in value 1 of the Attribute Specific Character
- 8 Set (0008,0005) (or the default Character Repertoire if value 1 is empty) may be further
- 9 extended with additional Coded Character Sets, if needed. The additional Coded Character
- 10 Sets and extension mechanism shall be specified in additional values of the Attribute Specific
- 11 Character Set. If Attribute Specific Character Set (0008,0005) has a single value, the DICOM
- 12 SOP Instance supports only one single-byte code table and no Code Extension techniques. If
- Attribute Specific Character Set (0008,0005) has multiple values, the DICOM SOP Instance
- supports Code Extension techniques as described in ISO/IEC 2022:1994.
- NOTE— Considerations on the Handling of Unsupported Character Sets:
- In DICOM, character sets are not negotiated between Application Entities but are indicated by a conditional Attribute of the SOP Common Module.

 Therefore, implementations may be confronted with character sets that are unknown to them. The machine should print or display such characters by replacing all unknown characters with the four characters "\nnn", where "nnn" is the three digit octal representation of each byte.
- An example of this for an ASCII based machine would be as follows:
- Character String: Günther
- 24 Encoded representation: 04/07 15/12 06/14 07/04 06/08 06/05 07/02
- ASCII based machine: G\374nther
- Implementations may also encounter Control Characters which are unknown.
- The implementations should also replace each Control Character with the four
- characters "\nnn", where "nnn" is the three digit octal representation of each
- byte.

Item #4-11

1

10

11

12

13

26

Add Section 6.1.2.4:

6.1.2.4 Code Extension Techniques

- 2 For Data Elements with Value Representations of SH (Short String), LO (Long String), ST
- 3 (Short Text), LT (Long Text), or PN (Person Name), the default character repertoire or the
- 4 character repertoire specified by Attribute Specific Character Set (0008,0005), value 1, may be
- 5 extended using the Code Extension techniques specified by ISO/IEC 2022:1994.
- 6 If such Code Extension techniques are used, the related Specific Character Set or Sets shall be
- specified by value 2 to value n of the Attribute Specific Character Set (0008,0005) of the SOP
- 8 Common Module (see PS 3.3 Addenda), and shall be stated in the Conformance Statement.
- 9 NOTES— 1. Defined Terms for Specific Character Set (0008,0005) are defined in PS 3.3.
 - 2. Support for Japanese kanji (ideographic), hiragana (phonetic), and katakana (phonetic) characters is defined in PS3.3. Definition of Chinese, Korean, and other multi-byte character sets awaits consideration by the appropriate standards organizations.

Item #4-12

Add Section 6.1.2.5:

14 6.1.2.5 Usage of Code Extension

- 15 DICOM supports Code Extension techniques if the Attribute Specific Character Set
- 16 (0008,0005) is multi-valued. The method employed for Code Extension in DICOM is as
- described in ISO/IEC 2022:1994. The following assumptions shall be made and the following
- 18 restrictions shall apply:

19 6.1.2.5.1 Assumed Initial States

- Code element G0 and code element G1 (in 8-bit mode only) are always invoked in the GL and GR areas of the code table respectively. Designated character sets for these
- code elements are immediately in use. Code elements G2 and G3 are not used.
- 23 The primary set of Control Characters shall always be designated as the C0 code
- 24 element and this shall be invoked in the CL area of the code table. The C1 code
- element shall not be used.

6.1.2.5.2 Restrictions for Code Extension

- As code elements G0 and G1 always have shift status, Locking Shifts (SI, SO) are not required and shall not be used.
- As code elements G2 and G3 are not used, Single Shifts (SS2 and SS3) cannot be used.

6.1.2.5.3 Requirements

- The character set specified by value 1 of the Attribute Specific Character Set (0008,0005), or the default character repertoire if value 1 is missing, shall be active at the beginning of each textual Data Element value, and at the beginning of each line (i.e., after a CR and/or LF) or page (i.e., after an FF).
 - If within a textual value a character set other than the one specified in value 1 of the Attribute Specific Character Set (0008,0005), or the default character repertoire if value 1 is missing, has been invoked, there shall be a switch to the character set specified in the value 1, or the default character repertoire if value 1 is missing, in the following instances:
 - before the end of line (i.e., before the CR and/or LF)
 - before the end of a page (i.e. before the FF)
 - before the end of a Data Element value (e.g. before the 05/12 character code which seperates multiple textual Data Element Values 05/12 correponds to "\" (BACKSLASH) in the case of default repertoire IR-6 or "\" (YEN SIGN) in the case of IR-14).
 - before the "A" and "=" delimiters separating name components and name component groups in Data Elements with a VR of PN.
 - NOTE— These two requirements allow an application to skip lines, values, or components in a textual data element and start the new line with a defined character set without the need to track the character set changes in the text skipped. A similar restriction appears in the RFCs describing the use of multibyte character sets over the Internet. An Escape Sequence switching to the value 1 or default Specific Character Set is not needed within a line, value, or component if no Code Extensions are present.

6.1.2.5.4 Levels of Implementation and Initial Designation

- a) Attribute Specific Character Set (0008,0005) not present:
- 32 7-bit code

1 2		Implementation level:	ISO 2022 Level 1 - Elementary 7-bit code (<u>code-level</u> <u>identifier 1</u>)
3		Initial designation:	ISO-IR 6 (ASCII) as G0.
4		Code Extension shall	not be used.
5	b)	Attribute Specific Cha	aracter Set (0008,0005) single value:
6		8-bit code	
7 8		Implementation level:	ISO 2022 Level 1 - Elementary 8-bit code (<u>code-level</u> <u>identifier 11</u>)
9 10 11		Initial designation:	One of the ISO 8859-defined character sets, or the 8-bit code table of JIS X 0201 specified by value 1 of the Attribute Specific Character Set (0008,0005), as G0 and G1.
12		Code Extension shall	not be used.
13	c)	Attribute Specific Cha	aracter Set (0008,0005) multi-valued:
14		8-bit code	
15 16		Implementation level:	ISO 2022 Level 4 - Redesignation of Graphic Character Sets within a Code (code-level identifier 14)
17 18 19		Initial designation:	One of the ISO 8859-defined character sets, or the 8-bit code table of JIS X 0201 specified by value 1 of the Attribute Specific Character Set (0008,0005), as G0 and G1. If value 1
20 21			of the Attribute Specific Character Set (0008,0005) is empty, ISO-IR 6 (ASCII) is assumed.
22		All character sets spec	ified in the various values of Attribute Specific Character Set
23		(0008,0005), including	g value 1, may participate in Code Extension.
2425	6.1.3 (Control Characters	

Item #4-13
Add the Control Character, ESC as follows:

- 26 Textual data that is interchanged may require some formatting information. Contro
- 27 Characters are used to indicate formatting, but their use in DICOM is kept to a minimum since
- some machines may handle them inappropriately. ISO 646:1990 and ISO 6429:1990 define

- 1 Control Characters. As shown in Table 6.1.3-1 below, only a subset of four Control
- 2 Characters from the C0 set shall be used in DICOM for the encoding of Control Characters in
- 3 text strings.

9

25

Table 6.1-1— DICOM Control Characters and their encoding

Acronym	Name	Coded Value			
LF	Line Feed	00/10			
FF	Form Feed	00/12			
CR	Carriage Return	00/13			
<u>ESC</u>	<u>Escape</u>	01/11			

- 5 In text strings a new line shall be represented as CR LF.
- NOTE— Some machines (such as UNIX based machines) may interpret LF (00/10) as a new line. In such cases, it is expected that the DICOM format is converted to the correct internal representation for that machine.

6.2 Value representation (VR)

- 10 The Value Representation of a Data Element describes the data type and format of that Data
- Element's Value(s). PS 3.6 lists the VR of each Data Element by Data Element Tag.
- Values with VRs constructed of character strings, except in the case of the VR UI, shall be
- padded with SPACE characters (20H, in the Default Character Repertoire) when necessary to
- achieve even length. Values with a VR of UI shall be padded with a single trailing NULL
- 15 (00H) character when necessary to achieve even length. Values with a VR of OB shall be
- padded with a single trailing NULL byte value (00H) when necessary to achieve even length.
- 17 An individual Value, including padding, shall not exceed the Length of Value. For multi-
- valued fields see Section 6.4.
- NOTE— The length of Value Representations for which the Character Repertoire can be extended or replaced are expressly specified in characters rather than bytes in Table 6.2-1. This is because the mapping from a character to the number of bytes used for that character's encoding may be dependent on the character set used.
- 24 <u>Escape Sequences used for Code Extension shall not be included in the count of characters.</u>

Table 6.2-1— DICOM value representations

in 6.2)

Characters LF,

FF, and CR but

allowing Control

Character ESC.

Item #4-14

Some changes have been made in Table 6.2-1: DICOM value representations, to the Definition, Character Repertoire and Length of Value columns of rows with VR Name equal to **SH, LO, ST, LT, PN**. Only changes to Table 6.2-1 are specified below. See PS 3.5. See Editor's note/instructions within the table.

VR	Definition	Character	Length of
Name		Repertoire	Value
LO	A character string that may be padded with	Default Character	64 chars
Long	leading and/or trailing spaces. The character	Repertoire and/or	maximum
String	code 5CH (the BACKSLASH "\" in ISO-IR	as defined by	(see NOTE
	6) shall not be present, as it is used as the	(0008,0005).	in 6.2)
	delimiter between values in multiple valued		
	data elements. The string shall not have		
	Control Characters except for ESC.		
LT	A character string that may contain one or	Default Character	10240 chars
Long	more paragraphs. It may contain the Graphic	Repertoire and/or	maximum
Text	Character set and the Control Characters, CR,	as defined by	(see NOTE
	LF, FF, and ESC. It may be padded with	(0008,0005).	in 6.2)
	trailing spaces, which may be ignored, but		
	leading spaces are considered to be		
	significant. Data Elements with this VR shall		
	not be multi-valued and therefore character		
	code 5CH (the BACKSLASH "\" in ISO-IR		
	6) may be used.		
PN	A character string encoded using a 5	Default Character	64 chars
Person	component convention. The string may be	Repertoire and/or	<u>maximum</u>
Name	padded with trailing spaces. The five	as defined by	<u>per</u>
	components in their order of occurrence are:	(0008,0005)	component
	family name complex, given name complex,	excluding	group
	middle name, name prefix, name suffix. Any	Control	(see NOTE

of the five components may be an empty

caret "^" character (5EH). Delimiters are

required for interior null components.

string. The component delimiter shall be the

Trailing null components and their delimiters may be omitted. Multiple entries are permitted in each component and are encoded as natural text strings, in the format preferred by the named person. This conforms to the ANSI HISPP MSDS Person Name common data type.

This group of five components is referred to as a Person Name component group.

For the purpose of writing names in ideographic characters and in phonetic characters, up to 3 groups of components (see Annex I examples 1 and 2) may be used. The delimiter for component groups shall be the equals character "=" (3DH). The three component groups of components in their order of occurrence are: a single-byte character representation, an ideographic representation, and a phonetic representation. Any component group may be absent, including the first component group. In this case, the person name may start with one or more "=" delimiters. Delimiters are required for interior null component groups. Trailing null component groups and their delimiters may be omitted.

<u>Precise semantics are defined for each component group.</u> See section 6.2.1.

Examples:

Rev. John Robert Quincy Adams, B.A. M.Div.

"Adams^John Robert Quincy^^Rev.^B.A. M.Div."

[One family name; three given names; no middle name; one prefix; two suffixes.] Susan Morrison-Jones, Ph.D., Chief Executive Officer

"Morrison-Jones^Susan^^^Ph.D., Chief Executive Officer"

[Two family names; one given name; no middle name; no prefix; two suffixes.]

John Doe

"Doe^John"

[One family name; one given name; no middle name, prefix, or suffix. Delimiters have been omitted for the three trailing null components.]

(for examples of the encoding of Person
Names using multi-byte character sets see
Annex I)

NOTES:

- 1. This five component convention is also used by HL7 as defined in ASTM E-1238-91 and further specialized by the ANSI MSDS.
- 2. In typical American and European usage the first occurrence of "given name" would represent the "first name". The second and subsequent occurrences of the "given name" would typically be treated as a middle name(s). The "middle name" component is retained for the purpose of backward compatibility with existing standards.
- 3. The "Degree" component present in ASTM E-1238-91 is absorbed into the

	"Suffix" component.		
	4. The implementor should remain mindful of		
	earlier usage forms which represented "given		
	names" as "first" and "middle" and that		
	translations to and from this previous typical		
	usage may be required.		
	5. For reasons of backward compatibility		
	with versions of this standard prior to V3.0,		
	person names might be considered a single		
	family name complex (single component		
	without "^" delimiters).		
SH	A character string that may be padded with	Default Character	16 chars
Short	leading and/or trailing spaces. The character	Repertoire and/or	maximum
String	code 05CH (the BACKSLASH "\" in ISO-IR	as defined by	(see NOTE
	6) shall not be present, as it is used as the	(0008,0005).	in 6.2)
	delimiter between values for multiple data		
	elements. The string shall not have Control		
	Characters except ESC.		
ST	A character string that may contain one or	Default Character	
Short	more paragraphs. It may contain the Graphic	Repertoire and/or	
Text	Character set and the Control Characters, CR,	as defined by	(see NOTE
	LF, FF, and <u>ESC</u> . It may be padded with	(0008,0005).	in 6.2)
	trailing spaces, which may be ignored, but		
	leading spaces are considered to be		
	significant. Data Elements with this VR shall		
	not be multi-valued and therefore character		
	code 5CH (the BACKSLASH "\" in ISO-IR		
	6) may be used.		

Item #4-15

Add Section 6.2.1:

6.2.1 Ideograph and phonetic characters in Data Elements with VR of PN

- 2 Character strings representing person names are encoded using a convention for PN value
- 3 representations based on component groups with 5 components.
- 4 For the purpose of writing names in ideographic characters and in phonetic characters, up to 3
- 5 component groups may be used. The delimiter of the component group shall be the equals
- 6 character "=" (3DH). The three component groups in their order of occurrence are: a single-
- byte representation, an ideographic representation, and a phonetic representation.
- 8 Any component group may be absent, including the first component group. In this case, the
- 9 person name may start with one or more "=" delimiters. Delimiters are also required for
- interior null component groups. Trailing null component groups and their delimiters may be
- 11 omitted.
- 12 The first component group shall be encoded using a single-byte character set with no Code
- 13 Extensions. The character set shall be the one specified by the Attribute Specific Character
- 14 Set (0008,0005), value 1. If Attribute Specific Character Set (0008,0005) is not present, the
- default Character Repertoire ISO-IR 6 shall be used.
- 16 The second group shall be used for ideographic characters. The character sets used will
- usually be those from Attribute Specific Character Set (0008,0005), value 2 through n, and
- may use ISO 2022 escapes.
- 19 The third group shall be used for phonetic characters. The character sets used shall be those
- from Attribute Specific Character Set (0008,0005), value 1 through n, and may use ISO 2022
- 21 escapes.
- Delimiter characters "A" and "=" are taken from the character set specified by value 1 of the
- 23 Attribute Specific Character Set (0008,0005). If Attribute Specific Character Set (0008,0005),
- value 1 is not present, the default Character Repertoire ISO-IR 6 shall be used.
- 25 At the beginning of the value of the Person Name data element, the following initial condition
- is assumed: if Attribute Specific Character Set (0008,0005), value 1 is not present, the default
- 27 Character Repertoire ISO-IR 6 is invoked, and if the Attribute Specific Character Set
- 28 (0008,0005), value 1 is present, the character set specified by value 1 of the Attribute is
- 29 invoked.

- 1 At the end of the value of the Person Name data element, and before the component delimiters
- 2 "A" and "=", the character set shall be switched to the default character repertoire ISO-IR 6, if
- 3 the Attribute Specific Character Set (0008,0005), value 1 is not present, or if the Attribute
- 4 Specific Character Set (0008,0005), value 1 is present, the character set specified by value 1 of
- 5 the Attribute.
- 6 The length of value of each component group is 64 characters maximum, including the
- 7 delimiter for the component group.

8 6.4 Value Multiplicity (VM) and Delimitation

Item #4-16

Modify the first item of the second paragraph:

- 9 When a Data Element has multiple Values, those Values shall be delimited as follows:
- For character strings, the character 5CH (BACKSLASH "\" in the case of the repertoire ISO IR-6) shall be used as a delimiter between Values.

Item #5

Add following Section 7.5.3 to Section 7.5 Nesting of data sets:

Note: Add the following clarification for when Attribute Specific Character Set (0008,0005), may appear in a sequence item

12 7.5.3 SEQUENCE INHERITANCE

- An encapsulated Data Set shall only include the Specific Character Set (0008,0005) data
- element if the Attribute Specific Character Set is defined in the IOD for that sequence of items.
- NOTE— An encapsulated Data Set does not include the Specific Character Set data
- element unless the Specific Character Set Attribute is defined as part of the IOD
- for that sequence.
- 18 If an encapsulated Data Set includes the Specific Character Set Attribute, it shall apply only to
- 19 the encapsulated Data Set. If the Attribute Specific Character Set is not explicitly included in
- an encapsulated Data Set, then the Specific Character Set value of the encapsulating Data Set
- 21 applies.

22

Item #6

Add a Control Character **ESC** to Annex E (Normative) DICOM default character repertoire.

Annex E (Normative) DICOM default character repertoire

- 1 The default repertoire for character strings in DICOM is the Basic G0 Set of the International
- 2 Reference Version of ISO 646:1990 (ISO IR-6). In addition, the four Control Characters LF,
- 3 FF, CR, and ESC are supported. These Control Characters are a subset of the C0 set defined
- 4 in ISO 646:1990 and ISO 6429:1990.
- 5 The byte encoding of the default character repertoire is pictured in Table E-1. This table can
- 6 be used to derive both ISO column/row byte values and hex values for encoded
- 7 representations (see Section 6.1.1).

Table E-1— DICOM Default character repertoire encoding

				b8	0	0	0	0	0	0	0	0
				b7	0	0	0	0	1	1	1	1
				b6	0	0	1	1	0	0	1	1
				b5	0	1	0	1	0	1	0	1
b4	b3	b2	b1		00	01	02	03	04	05	06	07
0	0	0	0	00			SP	0	@	Р	`	р
0	0	0	1	01			!	1	Α	Q	а	q
0	0	1	0	02			"	2	В	R	b	r
0	0	1	1	03			#	3	С	S	С	S
0	1	0	0	04			\$	4	D	Т	d	t
0	1	0	1	05			%	5	Е	U	е	u
0	1	1	0	06			&	6	F	V	f	٧
0	1	1	1	07			'	7	G	W	g	W
1	0	0	0	80			(8	Н	Х	h	Х
1	0	0	1	09)	9	I	Υ	i	у
1	0	1	0	10	LF		*	:	J	Z	j	Z
1	0	1	1	11		<u>ESC</u>	+	•	K	[k	{
1	1	0	0	12	FF		,	<	L	\	I	
1	1	0	1	13	CR		-	=	М]	m	}
1	1	1	0	14				>	N	٨	n	~
1	1	1	1	15			/	?	0	_	0	

2

3

Item #7

Add Annex I (Informative) Character sets and person name value representation in the Japanese Language:

Annex I (Informative) Character sets and person name value representation in the Japanese Language

4 I.1 Character sets for the Japanese language

- 5 **(1) JIS X 0201**
- 6 JIS X 0201 has the following code elements:
- 7 ISO-IR 13 Japanese katakana (phonetic) characters (94 characters)
- 8 ISO-IR 14 Japanese romaji (alphanumeric) characters (94 characters)
- 9 JIS X 0201 defines a 7-bit romaji code table (ISO-IR 14), a 7-bit katakana code table (ISO-IR
- 13), and the combination of romaji and katakana as an 8-bit code table (ISO-IR 14 as G0, ISO-
- 11 IR 13 as G1).
- The 7-bit romaji ISO-IR 14 is identical to ASCII (ISO-IR 6) except that bit combination 05/12
- represents a yen sign and bit combination 07/14 represents an over-line. These are national
- 14 Graphic Character allocations in ISO 646.
- 15 Escape Sequence (for reference) (see PS 3.3)

	ISO-IR 14	ISO-IR 13
G0 set	ESC 02/08 04/10	ESC 02/08 04/09
G1 set	ESC 02/09 04/10	ESC 02/09 04/09

NOTE— The G2 and G3 sets are not used in DICOM.

17 **(2) JIS X 0208**

- JIS X 0208 has the following code element:
- 19 ISO-IR 87: Japanese kanji (ideographic), hiragana (phonetic), and katakana (phonetic)
- 20 characters (94² characters, 2-byte).
- 21 **(3) JIS X 0212**
- 22 JIS X 0212 has the following code element:

- ISO-IR 159: Supplementary Japanese kanji (ideographic) characters (94² characters, 2-byte)
- 3 Escape Sequence (for reference) (see PS 3.3)

	ISO-IR 87	ISO-IR 159
G0 set	ESC 02/04 04/02	ESC 02/04 02/08 04/04
G1 set	ESC 02/04 02/09 04/02	ESC 02/04 02/09 04/04

- NOTES— 1: The Escape Sequence for the designation function G0-DESIGNATE 94-SET, has first I byte 02/04 and second I byte 02/08. There is an exception to this: The second I byte 02/08 is omitted if the Final Byte is 04/00, 04/01 or 04/02. See ISO/IEC 2022.
- The G2 and G3 sets are not used in DICOM.

I.2 Internet Practice

9

- 10 The major protocols for the Internet such as SMTP, NNTP and WWW adopt the encoding
- method for Japanese characters called "ISO-2022-JP" as described in RFC 1468, Japanese
- 12 Character Encoding for Internet Messages. The method of encoding Japanese characters in
- the DICOM standard is almost the same as ISO-2022-JP, except for the following.
- 14 Character sets supported for the Japanese language

DICOM	ISO-2022-JP
ASCII (ISO-IR 6)	ASCII (ISO-IR 6)
JIS X 0201 Katakana (ISO-IR 13)	JIS-X 0201 Romaji (ISO-IR 14)
JIS X 0201 Romaji (ISO-IR 14)	JIS-X 0208 Kanji (ISO-IR 87)
JIS X 0208 Kanji (ISO-IR 87)	
JIS X 0212 Kanji (ISO-IR 159)	

15 Control Character set supported

DICOM	1	ISO-202	22-JP
LF	(00/10)	LF	(00/10)
FF	(00/12)	CR	(00/13)
CR	(00/13)	SO	(00/14)
ESC	(01/11)	SI	(00/15)
		ESC	(01/11)

16 I.3 Example of Person Name Value Representation in the Japanese Language

- 1 Character strings representing person names are encoded using a convention for PN value
- 2 representations based on component groups with 5 components.
- 3 For languages which use ideographic characters, it is sometimes necessary to write names both
- 4 in ideographic characters and in phonetic characters. Ideographic characters may be required
- 5 for official purposes, while phonetic characters may be needed for pronounciation and data
- 6 processing purposes.
- 7 For the purpose of writing names in ideographic characters and in phonetic characters, up to 3
- 8 component groups may be used. The delimiter of the component group shall be the equals
- 9 character "=" (3DH). The three component groups in their order of occurrence are: a single
- byte representation, an ideograph representation, and a phonetic representation.

(1) Example 1: Value 1 of Attribute Specific Character Set (0008,0005) is not

- present. (In this case, ISO-IR 6 is used by default.)
- 13 (0008,0005) \ISO 2022 IR 87
- 14 Character String:

Yamada^Tarou=山田^太郎=やまだ^たろう

Yamada^Tarou= ESC 02/04 04/02 山田 ESC 02/08 04/02 ^ ESC 02/04 04/02 太郎 ESC 02/08 04/02 = ESC 02/04 04/02 やまだ ESC 02/08 04/02 ^ ESC 02/04 04/02 たろう ESC 02/08 04/02

- 16 Encoded representation:
- 17 05/09 06/01 06/13 06/01 06/04 06/01 5/14 05/04 06/01 07/02 06/15 07/05 03/13 01/11 02/04
- 18 04/02 03/11 03/03 04/05 04/04 01/11 02/08 04/02 05/14 01/11 02/04 04/02 04/02 04/00 04/15
- 19 03/10 01/11 02/08 04/02 03/13 01/11 02/04 04/02 02/04 06/04 02/04 05/14 02/04 04/00 01/11
- 20 02/08 04/02 05/14 01/11 02/04 04/02 02/04 03/15 02/04 06/13 02/04 02/06 01/11 02/08 04/02
- 21 Result of representation by an ASCII-based machine:
- $22 \qquad Yamada^Tarou = \033\$B; 3ED\\033(B^033\$BB@O:\033\$B\$d\$^\$@033(B^033\$B\$?\$)$
- 23 m\$&\033(B

15

24

Table I-1— Character sets and Escape Sequences used in Example 1

Character	Componen	Value of	ISO	Standard	ESC	Character Set:
Set	t Group	(0008,0005)	Registration	for Code	Sequence	Purpose of Use
Description		Defined Term	Number	Extensio		
				n		

Japanese	First:	Value 1:	ISO-IR 6			GL	ISO 646:
	Single-byte	none					
	Second:	Value 2:	ISO-IR 87	ISO	ESC	GL	JIS X 0208: Japanese
	Ideographi	ISO 2022 IR		2022	02/04		kanji, hiragana,
	c	87			04/02		katakana
		Value 1:	ISO-IR 6	ISO	ESC	GL	ISO 646: for delimiters
		none		2022	02/08		
					04/02		
	Third:	Value 2:	ISO-IR 87	ISO	ESC	GL	JIS X 0208: Japanese
	Phonetic	ISO 2022 IR		2022	02/04		hiragana, and katakana
		87			04/02		
		Value 1:	ISO-IR 6	ISO	ESC	GL	ISO 646: for delimiters
		none		2022	02/08		
					04/02		

- 2 (2) Example 2: Value 1 of Attribute Specific Character Set (0008,0005) is ISO 2022 IR 13.
- 4 (0008,0005) ISO 2022 IR 13\ISO 2022 IR 87
- 5 Character String:

ヤマタ゛^タロウ=山田^太郎=やまだ^たろう

ヤマタ^{*} ^タロウ= ESC 02/04 04/02 山田 ESC 02/08 04/10 ^ ESC 02/04 04/02 太郎 ESC 02/08 04/10 = ESC 02/04 04/02 やまだ ESC 02/08 04/10 ^ ESC 02/04 04/02 たろう ESC 02/08 04/10

6

- 7 Encoded representation:
- 8 13/04 12/15 12/00 13/14 05/14 12/00 13/11 11/03 03/13 01/11 02/04 04/02 03/11 03/03 04/05
- 9 04/04 01/11 02/08 04/10 05/14 01/11 02/04 04/02 04/02 04/00 04/15 03/10 01/11 02/08 04/10
- 10 03/13 01/11 02/04 04/02 02/04 06/04 02/04 05/14 02/04 04/00 01/11 02/08 04/10 05/14 01/11
- 11 02/04 04/02 02/04 03/15 02/04 06/13 02/04 02/06 01/11 02/08 04/10
- Result of representation by an ASCII-based machine:
- $\label{eq:condition} $$ \frac{324}{317}300\frac{336}{300}\frac{333}{263}=033\$B;3ED\\033(J^{033\$B}@O:033(J=033\$B\$d\$^{033}). $$$
- 14 $(J^{033}B$?m&033(J)$
 - Table I-2— Character sets and Escape Sequences used in Example 2

Character	Componen	Value of	ISO	Standard	ESC		Character Set:
Set	t Group	(0008,0005)	Registration	for Code	Sequence		Purpose of Use
Description		Defined Term	Number	Extensio			
				n			
Japanese	First:	Value 1:	ISO-IR 13	ISO	ESC 02/09	GR	JIS X 0201: Japanese
	Single-byte	ISO 2022 IR		2022	04/09		katakana
		13					
			ISO-IR 14	ISO	ESC 02/08	GL	JIS X 0201: Japanese
				2022	04/10		romaji for delimiters
	Second:	Value 2:	ISO-IR 87	ISO	ESC 02/04	GL	JIS X 0208: Japanese
	Ideographi	ISO 2022 IR		2022	04/02		kanji, hiragana,
	c	87					katakana
		Value 1:	ISO-IR 14	ISO	ESC 02/08	GL	JIS X 0201: Japanese
		ISO 2022 IR		2022	04/10		romaji for delimiters
		13					
	Third:	Value 2:	ISO-IR 87	ISO	ESC 02/04	GL	JIS X 0208: Japanese
	Phonetic	ISO 2022 IR		2022	04/02		hiragana, and katakana
		87					
		Value 1:	ISO-IR 14	ISO	ESC 02/08	GL	JIS X 0201: Japanese
		ISO 2022 IR		2022	04/10		romaji for delimiters
		13					

Digital Imaging and Communications in Medicine (DICOM)

PART 3 Addenda:

Multi-byte Character Set Support

4

3

5 Items to be added or changed in PS 3.3: Information Object Definitions

Item #1

Add the following to Section 2 Normative references:

6 ISO/IEC 2022:1994 Information technology - Character code structure and extension

7 techniques

Item #2

Add the following to PS 3.3 Section 3 Definitions:

8 3.9 Character handling definitions

- 9 This part of the standard makes use of the following terms defined in ISO/IEC 2022:1994:
- a) Coded character set; code
- b) Code extension
- c) Escape sequence

Item #3

Make the following correction to Section 4 Symbols and abbreviations:

JIRA Japan Industries Association of Radiation Apparatus

Item #4

Make the following changes to Section C.2.2 Patient identification module, Table C.2-2— Patient identification module Attributes:

Table C.2-2— Patient identification module attributes

Attribute Name	Tag	Attribute Description
Patient's Name	(0010,0010)	Patient's full name

15

14

Item #5

Make the following changes to Section C.7.1.1 PATIENT MODULE, Table C.7-1—Patient module Attributes:

Note: For use in MIPS standard-94, the Attribute Ethnic Group (0010,2160) has been removed from Table C.7-1.

Table C.7-1— Patient module attributes

Attribute Name	Tag	Attribute Description
Patient's Name	(0010,0010)	Patient's full name

Item #6

1

2

3

4

11

Make the following changes to Section C.7.7 Patient summary module, Table C.7-13— Patient summary module attributes:

Table C.7-13— Patient summary module attributes

Attribute Name	Tag	Type	Attribute Description
Patient's Name	(0010,0010)	2	Patient's full name

Item #7

Make the following changes to Section C.12 General modules:

5 C.12 General modules

6 The SOP common module shall be mandatory for all DICOM IODs.

7 C.12.1 SOP common module

- 8 Table C.12-1 defines the Attributes which are required for proper functioning and
- 9 identification of the associated SOP Instances. They do not specify any semantics about the
- 10 real-world object represented by the IOD.

Table C.12-1— SOP common module attributes

Attribute Name	Tag	Type	Attribute Description
SOP Class UID	(0008,0016)	see	Uniquely identifies the SOP Class.
		C.12.1.1.1	See PS 3.4.

SOP Instance UID	(0008,0018)	see	Uniquely identifies the SOP Instance.
		C.12.1.1.1	See PS 3.4.
Specific Character Set	(0008,0005)	1C	Character Set that expands or replaces
			the Basic Graphic Set. Required if an
			expanded or replacement character set
			is used. See C.12.1.1.2 for Defined
			Terms.
Instance Creation Date	(0008,0012)	3	Date the SOP Instance was created.
Instance Creation Time	(0008,0013)	3	Time the SOP Instance was created.
Instance Creator UID	(0008,0014)	3	Uniquely identifies device which
			created the SOP Instance.

C.12.1.1 SOP COMMON ATTRIBUTE DESCRIPTIONS

2 C.12.1.1.1 SOP Class UID, SOP Instance UID

- 3 The SOP Class UID and SOP Instance UID attributes are defined for all DICOM IODs.
- 4 However, they are only encoded in composite IODs with the type equal to 1. When encoded
- 5 they shall be equal to their respective attributes in the DIMSE services and the file meta
- 6 information header (media storage see Part 10).

7 C.12.1.1.2 Specific character set

Item #7-1

1

Modify the first paragraph:

- 8 Specific Character Set (0008,0005) identifies the character set that expands or replaces the
- 9 basic graphic set (ISO 646) for values of data elements that have value representation of SH,
- 10 LO, ST, PN or LT. See PS 3.5.

Item #7-2

Replace second paragraph, and add Table C.12-2 and a note:

- 11 If the Attribute Specific Character Set (0008,0005) is not present or has only a single value,
- 12 <u>Code Extension techniques are not used.</u> <u>Defined Terms for the Attribute Specific Character</u>
- 13 Set (0008,0005), when single valued, are International Registration Numbers as per ISO 2375
- 14 (e.g., IR 100 for Latin alphabet No. 1). See Table C.12-2.

Table C.12-2— Defined Terms for single-byte character sets without Code Extensions

Character Set	Defined	ISO registration	Number of	Code	Character Set
Description	Term	number	characters	element	
Default repertoire	none	ISO-IR 6	94	G0	ISO 646:
Latin alphabet No. 1	ISO_IR 100	ISO-IR 100	96	G1	Supplementary set
		ISO-IR 6	94	G0	ISO 646:
Latin alphabet No. 2	ISO_IR 101	ISO-IR 101	96	G1	Supplementary set
		ISO-IR 6	94	G0	ISO 646:
Latin alphabet No. 3	ISO_IR 109	ISO-IR 109	96	G1	Supplementary set
		ISO-IR 6	94	G0	ISO 646:
Latin alphabet No. 4	ISO_IR 110	ISO-IR 110	96	G1	Supplementary set
		ISO-IR 6	94	G0	ISO 646:
Cyrillic	ISO_IR 144	ISO-IR 144	96	G1	Supplementary set
		ISO-IR 6	94	G0	ISO 646:
Arabic	ISO_IR 127	ISO-IR 127	96	G1	Supplementary set
		ISO-IR 6	94	G0	ISO 646:
Greek	ISO_IR 126	ISO-IR 126	96	G1	Supplementary set
		ISO-IR 6	94	G0	ISO 646:
Hebrew	ISO_IR 138	ISO-IR 138	96	G1	Supplementary set
		ISO-IR 6	94	G0	ISO 646:
Latin alphabet No. 5	ISO_IR 148	ISO-IR 148	96	G1	supplementary set
		ISO-IR 6	94	G0	ISO 646:
Japanese	ISO_IR 13	ISO-IR 13	94	G1	JIS X 0201: Katakana
		ISO-IR 14	94	G0	JIS X 0201: Romaji

NOTE— To use the single-byte code table of JIS X0201, the value of Attribute Specific Character Set (0008,0005), value 1 should be IR 13. This means that ISO-IR 13 is designated as the G1 code element which is invoked in the GR area. It should be understood that, in addition, ISO-IR 14 is designated as the G0 code element and this is invoked in the GL area.

Item #7-3

3

4 5

6 7

8

9

10

11

Add the following paragraph, and Tables C.12-3 and C.12-4:

If the Attribute Specific Character Set (0008,0005) has more than one value, Code Extension techniques are used and Escape Sequences may be encountered in all character sets. In order to indicate the presence of Code Extension, the Defined Terms for the repertoires have the prefix "ISO 2022", e.g., ISO 2022 IR 100 for the Latin Alphabet No. 1. See Table 12-3 and

- Table 12-4. Table 12-3 describes single-byte character sets for value 1 to value n of the
- 2 Attribute Specific Character Set (0008,0005), and Table 12-4 describes multi-byte character
- 3 sets for value 2 to value n of the Attribute Specific Character Set (0008,0005).
- NOTE— A prefix other than "ISO 2022" may be needed in the future if other Code Extension techniques are adopted.

Table C.12-3— Defined Terms for single-byte character sets with Code Extensions

Character	Defined Term	Standard	ESC sequence	ISO	Number	Code	Character Set
Set		for Code		registratio	of	element	
Description		Extensio		n number	character		
		n			S		
Default	ISO 2022 IR 6	ISO 2022	ESC 02/08	ISO-IR 6	94	G0	ISO 646
repertoire			04/02				
Latin	ISO 2022 IR	ISO 2022	ESC 02/13	ISO-IR	96	G1	Supplementary
alphabet	100		04/01	100			set
No. 1		ISO 2022	ESC 02/08	ISO-IR 6	94	G0	ISO 646
			04/02				
Latin	ISO 2022 IR	ISO 2022	ESC 02/13	ISO-IR	96	G1	Supplementary
alphabet	101		04/02	101			set
No. 2		ISO 2022	ESC 02/08	ISO-IR 6	94	G0	ISO 646
			04/02				
Latin	ISO 2022 IR	ISO 2022	ESC 02/13	ISO-IR	96	G1	Supplementary
alphabet	109		04/03	109			set
No. 3		ISO 2022	ESC 02/08	ISO-IR 6	94	G0	ISO 646
			04/02				
Latin	ISO 2022 IR	ISO 2022	ESC 02/13	ISO-IR	96	G1	Supplementary
alphabet	110		04/04	110			set
No. 4		ISO 2022	ESC 02/08	ISO-IR 6	94	G0	ISO 646
			04/02				
Cyrillic	ISO 2022 IR	ISO 2022	ESC 02/13	ISO-IR	96	G1	Supplementary
	144		04/12	144			set
		ISO 2022	ESC 02/08	ISO-IR 6	94	G0	ISO 646
			04/02				
Arabic	ISO 2022 IR	ISO 2022	ESC 02/13	ISO-IR	96	G1	Supplementary
	127		04/07	127			set
		ISO 2022	ESC 02/08	ISO-IR 6	94	G0	ISO 646
			04/02				
	1		· ., · · -				

Greek	ISO 2022 IR	ISO 2022	ESC 02/13	ISO-IR	96	G1	Supplementary
	126		04/06	126			set
		ISO 2022	ESC 02/08	ISO-IR 6	94	G0	ISO 646
			04/02				
Hebrew	ISO 2022 IR	ISO 2022	ESC 02/13	ISO-IR	96	G1	Supplementary
	138		04/08	138			set
		ISO 2022	ESC 02/08	ISO-IR 6	94	G0	ISO 646
			04/02				
Latin	ISO 2022 IR	ISO 2022	ESC 02/13	ISO-IR	96	G1	Supplementary
alphabet	148		04/13	148			set
No. 5		ISO 2022	ESC 02/08	ISO-IR 6	94	G0	ISO 646
			04/02				
Japanese	ISO 2022 IR	ISO 2022	ESC 02/09	ISO-IR 13	94	G1	JIS X 0201:
	13		04/09				Katakana
		ISO 2022	ESC 02/08	ISO-IR 14	94	G0	JIS X 0201-
			04/10				1976: Romaji

NOTE— If the Attribute Specific Character Set (0008,0005) has more than one value and value 1 is empty, it is assumed that value 1 is ISO 2022 IR 6.

Table C.12-4— Defined Terms for multiple-byte character sets with Code Extensions

Character	Defined Term	Standard	ESC sequence	ISO	Number	Code	Character Set
Set		for Code		registratio	of	element	
Description		Extensio		n number	character		
		n			s		
Japanese	ISO 2022 IR	ISO 2022	ESC 02/04	ISO-IR 87	94 ²	G0	JIS X 0208:
	87		04/02				Kanji
	ISO 2022 IR	ISO 2022	ESC 02/04	ISO-IR	94 ²	G0	JIS X 0212:
	159		02/08 04/04	159			Supplementary
							Kanji set

1

2

3

Digital Imaging and Communications in Medicine (DICOM)

PART 4 Addenda:

Multi-byte Character Set Support

45

3

6 Items to be added or changed in PS 3.4: Service Class Specifications

Item #1

Make the following correction to Section 4 Symbols and abbreviations:

JIRA "Japanese Industry Radiology Apparatus" should read

7 JIRA **Japan Industries Association of Radiation Apparatus**

Item #2

Add note 2 to Section C.2.2.2.4 Wild card matching:

8 C.2.2.2.4 Wild card matching

- 9 If the Attribute is not a date, time, signed long, signed short, unsigned long, floating point
- single, floating point double, other byte string, other word string, attribute tag, decimal string,
- integer string or UID and the value specified in the request contains any occurrence of an "*"
- or a "?", then "*" shall match any sequence of characters (including a zero length value) and
- 13 "?" shall match any single character. This matching is case sensitive. See PS 3.5 for Value
- 14 Representations.

15

- NOTE— 1. Wild-card matching on a value of "*" is equivalent to universal matching.
- 2. The wild card matching method specified by DICOM might not be supported
 by some non-DICOM multi-byte character text processors.

Item #2-1

Add to Section C.4.1.1.3.1 Request Identifier Structure an additional bullet item.

18 C.4.1.1.3.1 Request Identifier Structure

19 An Identifier in a C-FIND request shall contain

- Key Attributes values to be matched against the values of storage SOP Instances managed by the SCP;
- Query/Retrieve Level, element (0008,0052) which defines the level of the query.
- Conditionally, the Attribute Specific Character Set (0008,0005). This Attribute is
 required if expanded or replacement character sets are used.

Item #3

Add the third item to the first paragraph of Section C.4.1.1.3.2 Response identifier structure:

6 C.4.1.1.3.2 Response identifier structure

- 7 An Identifier in a C-FIND response shall contain
- Key Attributes with values corresponding to Key Attributes contained in the Identifier
 of the request
- Ouery/Retrieve Level, element (0008,0052) which defines the level of the query. The Query/Retrieve level shall be equal to the level specified in the request.
- Conditionally, the Attribute Specific Character Set (0008,0005). This Attribute is required if expanded or replacement character sets are used.

Digital Imaging and Communications in Medicine (DICOM)

PART 2 Addenda:

Multi-byte Character Set Support

4

5

1

2

3

Items to be added or changed in PS 3.2: Conformance

Item #1

Add a note after the first sentence in Section A.6 Support of extended character sets:

6 A.6 Support of extended character sets

7 Any support for Extended Character Sets shall be described here.

8 NOTE— The previous DICOM standard did not specify a method of encoding multi-byte 9 characters, such as Japanese characters. However, the present DICOM standard now allows Code Extension Techniques for multi-byte characters. 10 11 Therefore every DICOM implementation should take into account this enhancement. It is an implementation choice whether or not an Application 12 Entity supports multi-byte characters. But, when an Application Entity which 13 does not support Code Extension Techniques receives a Data Set which 14 15 includes multi-byte characters from another Application Entity, misrepresentation of characters may occur. 16 It is the responsibility of the Application Entity which receives the Data Sets to 17 take whatever action is considered necessary to minimize the effect of 18 misrepresented characters. It is not the responsibility of the sending 19 Application Entity to take such action. 20

Digital Imaging and Communications in Medicine (DICOM)

PART 6 Addenda:

Multi-byte Character Set Support

4

1

2

3

5 Items to be added or changed in PS 3.6: Data Dictionary

Item #1

Make the following change to Section 6, Registry of DICOM data elements. (The Value Multiplicity of the attribute Specific Character Set (0008,0005) has been changed from 1 to 1-n).

6 Registry of DICOM data elements

Tag	Name	VR	VM	Permitted
				Values
(0008,0005)	Specific Character Set	CS	<u>1-n</u>	