Digital Imaging and Communications in Medicine (DICOM)
Part 1: Introduction and Overview

Published by
National Electrical Manufacturers Association
1300 N. 17th Street
Rosslyn, Virginia 22209 USA

© Copyright 2009 by the National Electrical Manufacturers Association. All rights including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literacy and Artistic Works, and the International and Pan American Copyright Conventions.
DICOM is the worldwide Standard for medical imaging and related information. It is published and copyright by the National Electrical Manufacturers Association (NEMA). The normative DICOM Standard is published in English, and is available free on the official website at http://dicom.nema.org/standard.html.

This document is a translation prepared by the Japan Medical Imaging and Radiological Systems Industries Association (JIRA) under agreement with NEMA, with the intention to help Japanese readers understand the DICOM Standard more readily.

This translation represents a “best effort”; however, differences in meaning may exist between this translation and the normative DICOM Standard. Further, the DICOM Standard is under continuous maintenance and extension, so readers should expect that there are changes that are not reflected in this translation.

In the event of any difference between this translation and the DICOM Standard published in English by NEMA, the English version is normative and takes precedence.

Implementations shall claim conformance to the normative DICOM Standard. Users are advised to obtain the most current documents of the DICOM Standard directly from the official website.
解説

この文書は、DICOM Committee が作成し、NEMA が発行した下記の規格を翻訳したものである。

PS 3.1-2009
Digital Imaging and Communications in Medicine (DICOM)
Part 1: Data Structures and Encoding

File name: 09_01pu3.pdf

JIRA DICOM 委員会は 2007/1/26 の委員会で翻訳担当を決めて PS 3.1-2007 の翻訳を行った:

伊藤 パナソニック
森村 アロカ
伊藤 日立メディコ
前田 東洋メディック
四方田 千代田テクノル
久保 コニカミノルタ MG
早田 JRCE
松田 JSRT／埼玉医大 MG
福島 JRCE
田中 キャノン
福田 リマージュジャパン
篠田 TME
奥田 JSRT／岡崎市民

この翻訳は上記の翻訳をベースに作成した。

この文書のファイル名: P01-2009_j_20110308.pdf

用語統一・確認: 2011/03/11 繁村

<table>
<thead>
<tr>
<th>Application Entity</th>
<th>訳者用語 adopted by JIRA DICOM 用語統一委員会報告書平成 2 年 3 月日本規格協会情報技術標準化研究センター</th>
</tr>
</thead>
<tbody>
<tr>
<td>implementor</td>
<td>実装者</td>
</tr>
<tr>
<td>implementation</td>
<td>実装</td>
</tr>
<tr>
<td>entity</td>
<td>実体, エンティティ</td>
</tr>
<tr>
<td>facilitate</td>
<td>促進する, 容易にする</td>
</tr>
<tr>
<td>provider</td>
<td>提供者*</td>
</tr>
<tr>
<td>retired</td>
<td>引退した</td>
</tr>
<tr>
<td>user</td>
<td>利用者*</td>
</tr>
</tbody>
</table>

* OSI 用語調査委員会報告書 平成 2 年 3 月 日本規格協会情報技術標準化研究センター
注意と免責事項

この出版物に含まれる情報は、それを開発していた時点において、文書の開発や承認に従事していた人々の合意および文書の承認によって、によって技術的に理にかなっていると考えられた。合意とはこの文書の開発に参加したすべての人間で満場一致があることを必ずしも意味しない。

NEMA 規格および指針出版物は、ここに含まれている文書はその一つであるが、自発的に合意された規格開発手続きに従って開発される。このプロセスは有志者を集めて、そして／または、この出版によってカバーされる論題に関心を持つ人々の見解を捜し出す。NEMA は手続きを管理し、合意の開発における公平さを推進する規則を確立しているが、NEMA は文書を執筆しない、またその規格および指針出版物に含まれている任意の情報の正確さまたは完全性、あるいは任意の判断についての正当性を、独自に試験、評価、または検証しない。

NEMA は、特別か、間接か、重大か、補償かにかかわらず、この文書の出版、使用、応用、あるいは信頼に直接あるいは間接的に起因する、いかなる性質のいかなる身体傷害、財産あるいは他の損害に対する責任を放棄する。NEMA は、明示的か暗黙的かを問わず、ここに出版されるすべての情報の正確さあるいは完全性に関して責任を放棄し保証しない。またこの文書の中の情報が読者の特定の目的あるいはニーズを満たすことにに関して責任を放棄し、保証をしない。NEMA は、この規格または指針による、個々の製造業者あるいは販売業者の製品またはサービスの性能を保証することを引き受けない。

この文書を出版し利用可能にするにあたって、NEMA は、任意の個人あるいは団体のために、あるいはそれらに代わって、専門または他のサービスを与えることを引き受けない、または、NEMA は、任意の個人あるいは組織によって誰か他の人に負わされたいかなる義務も引き受けない。この文書を使用する人は誰でも、自分自身の独立した判断に頼るべきである。または必要に応じて、与えられる環境における合理的な行為の決定において有能な専門家の助言を求めるべきである。この出版物によってカバーされたテーマに関する情報と他の規格は、他情報源からの入手可能性がある。そして利用者は、この出版によってカバーされない追加の見解あるいは情報に関してその情報源を調べたいと思うかもしれない。

NEMA は、この文書の内容への遵守を監視する力または強制する力ももっていないし、それを引き受けない。NEMA は安全あるいは健康目的のために、製品、設計または設置を、認証、試験、または検査しない。この文書中のいかなる健康あるいは安全関連情報への遵守におけるいかなる証明書あるいは他の宣言書も、NEMA に帰することはない、そしてそれはただもっぱら宣言書の証明者または製造業者の責任である。
目次

注意と免責事項 ... 3
目次 ... 4
まえがき ... 5

序文 ... 6

歴史 ... 6

DICOM 規格 .. 6
現在の方向 .. 7

引退 ... 7

1 適用範囲と適用分野 .. 8
2 引用規格 ... 8
3 定義 ... 9

4 記号と略語 .. 10

5 DICOM 規格の目標 ... 10

6 DICOM 規格の内容の概要 ... 12
6.1 文書の構造 .. 12
6.2 PS 3.2: 適合性 ... 12
6.3 PS 3.3: 情報オブジェクト定義 ... 14
6.4 PS 3.4: サービスクラス仕様 ... 15
6.5 PS 3.5: データ構造と符号化 ... 15
6.6 PS 3.6: データ辞書 .. 16
6.7 PS 3.7: メッセージ交換 ... 16
6.8 PS 3.8: メッセージ交換のためのネットワーク通信サポート ... 16
6.9 PS 3.9: 引退した（元来は，メッセージ交換のための 2 点間通信サポート）................... 17
6.10 PS 3.10 媒体交換のための媒体保存とファイルフォーマット ... 17
6.11 PS 3.11: 媒体保存応用プロファイル ... 18
6.12 PS 3.12: 媒体交換のための媒体フォーマットと物理媒体 ... 19
6.13 PS 3.13: 引退した（元来は，プリント管理 2 点間通信サポート） 19
6.14 PS 3.14: グレースケール標準表示関数 ... 20
6.15 PS 3.15: セキュリティとシステム管理プロファイル ... 20
6.16 PS 3.16: コンテンツマッピング資源 .. 20
6.17 PS 3.17: 解説的情報 .. 20
6.18 PS 3.18: DICOM 持続性オブジェクトへのウェブアクセス(WADO) 20
まえがき

ACR (American College of Radiology) と NEMA (National Electrical Manufacturers Association) は、医療におけるデジタル画像と通信のための規格を開発するために合同委員会を組織した。この DICOM 規格は、NEMA の手続きに従って開発された。

この規格は、欧州の CEN TC251 および日本の JIRA を含む他の標準化組織との連絡の中で、米国の IEEE、HL7、そして ANSI を含む他の組織による評価を得て、開発された。

DICOM 規格は、次の文書の中で確立された指針を使用して、複数分冊の文書として構成される:

この文書は、次の分冊から構成される DICOM 規格の一分冊である:

PS 3.1: 序文と概要
PS 3.2: 適合性
PS 3.3: 情報オブジェクト定義
PS 3.4: サービスクラス仕様
PS 3.5: データ構造と符号化
PS 3.6: データ辞書
PS 3.7: メッセージ交換
PS 3.8: メッセージ交換のためのネットワーク通信サポート
PS 3.9: 引退文書
PS 3.10: 媒体交換のための媒体保存とファイルフォーマット
PS 3.11: 媒体保存対用プロファイル
PS 3.12: 媒体交換のための媒体フォーマットと物理媒体
PS 3.13: 引退文書
PS 3.14: グレースケール標準表示関数
PS 3.15: セキュリティとシステム管理プロファイル
PS 3.16: コンテンツマッピング資源
PS 3.17: 解説的情報を
PS 3.18: DICOM 持続性オブジェクトへのウェブアクセス(WADO)

これらの分冊は関連しているが独立の文書である。それらの開発レベルや承認状態は異なることがある。
歴史

1970年代におけるコンピュータ断層撮影装置（CT）とそれに続く他のデジタル診断画像モダリティの出現、そして臨床応用における計算機の使用の増加によって、American College of Radiology（ACR）と National Electrical Manufacturers Association（NEMA）は、多くの供給者によって製造された装置の間で画像および関連情報を転送するために標準的な方法に対する要求が新たに出現したことを認識した。これらの装置は様々なデジタル画像フォーマットを生成する。

ACR と NEMA は 1983年に、下記を目的とする規格を開発するための合同委員会を設立した：

- 機器の製造業者に依存しない、デジタル画像情報の通信を促進する
- 画像保管通信システム（PACS）の発展と拡大を促進する。それはまた病院情報の他のシステムとインタフェースすることができる
- 地理的に分散した多様な機器によって問い合わせることができる診断情報データベースの作成を可能にする。

ACR-NEMA 規格出版 No. 300-1985 は、1985年に出版され、バージョン 1.0 と名づけられた。この規格は1986年10月付で No. 1, 1988年1月付で No. 2 の二つ改訂が行われた。

ACR-NEMA 規格出版 No. 300-1988 は、1988年に出版され、バージョン 2.0 と名づけられた。これには、バージョン 1.0 と出版済みの二つの改訂、および追加の改訂が含まれていた。それは、画像表示機器をサポートするコマンドを提供すること、画像を識別する新しい階層構造を導入すること、そして画像を記述するときの限定性を向上させるための要素を追加することに関する新しい資料を含んでいた。

これらの規格出版物は、ハードウェアインタフェース、ソフトウェアコマンドの最小集合、およびデータフォーマットの矛盾がない集合を規定した。

DICOM 規格

現在、医療におけるデジタル画像と通信（DICOM）と呼ばれているこの規格は、ACR-NEMA 規格の旧バージョンへの多くの重要な拡張を含んでいる:

a. ネットワーク環境に適用可能である。ACR-NEMA 規格は二点間の環境だけに適用可能であった；ネットワーク環境での運用においては、ネットワークインタフェースユニット（NIU）が必要とされた。DICOMは産業界標準であるネットワークプロトコル TCP/IPを使用して、ネットワーク環境での運用をサポートする。

b. オフライン媒体環境に適用可能である。ACR-NEMA 規格ではファイルフォーマットあるいは物理媒体あるいは物理的ファイルシステムの選択を規定していた。DICOMはCD-RおよびMODのような産業界標準媒体およびISO 9600およびPCファイルシステム（FAT16）のような論理的ファイルシステムを使用したオフライン媒体環境での運用をサポートする。
c. 規格への適合を主張する機器が、交換されるコマンドおよびデータに反応する方法を規定する。ACR-NEMA 規格はデータ伝送に限定していたが、DICOM では、サービスクラスの概念をとおして、コマンドおよび関連するデータの意味論を規定する。

d. 適合性のレベルを規定する。ACR-NEMA 規格は最小の適合レベルを規定していた。DICOM は、実装者が特定のオプションを選択することでどのように適合性宣言書を構築しなければならないかを明示的に記述する。

e. 複数分冊の文書として構成される。これは、新しい機能の追加を簡単にすることで、急速に発展している環境において規格の発展を容易にする。DICOM 規格の構築では、複数分冊の文書を構成する方法を定義する ISO 指令に従ってきた。

f. 画像とグラフィックだけでなく、波形、レポート、プリント等に対しても、明示的な情報オブジェクトを導入している。

g. いかなる情報オブジェクトも唯一に識別するための確立された技術を明記している。これは、ネットワークを横切って作用される情報オブジェクトの間の関係の曖昧でない定義を容易にする。

現在の方向

DICOM 規格は進化する規格であり、DICOM 規格委員会の手続きに従って維持される。強化に関する提案は、この規格の利用者からの入力に基づいて DICOM 委員会の会員組織からもたらされる。これらの提案は、規格の将来の版に含めるか検討される。規格を更新する際の必要条件は、前の版との有効な互換性を維持することである。

引退

保守プロセスの一部には、IOD、属性、サービスクラス、SOP クラス、転送構文およびプロトコルを含み、これらに限定されない、規格の一部を引退させる処理が含まれる。

引退は、これらの機能が使用できないことを意味しない。しかし、DICOM 規格委員会は引退した機能の文書を保守しないであろう。読者は、規格の以前の版を参照すること。

規格に残っている代替機能を普及させたいので、引退した機能を新規に実装することは薦められない。
1 適用範囲と適用分野

PS 3.1 は、医療におけるデジタル画像と通信（DICOM）規格全体の概要を提供する。それは、規格の歴史、適用範囲、目標、および、構成を記述する。特に、規格の各分冊の内容の要約を含んでいる。

DICOM 規格は、以下を規定することによって、医用画像装置の相互運用性を容易にする:

- ネットワーク通信に関して、規格への適合を主張する機器が従うべきプロトコルの集合。
- これらのプロトコルを使用して交換することができるコマンドおよび関連情報の構文および意味論。
- 媒体通信に関して、規格への適合を主張する装置が従うべき媒体保存サービスの集合、ならびに、交換媒体に保存される画像や関連情報へのアクセスを容易にするファイルフォーマットおよび医用ディレクトリ構造。
- 規格への適合を主張する実装によって提供されなければならない情報。

DICOM 規格では、以下を規定しない:

- 適合を主張している装置への規格の任意の特徴の実装の詳細。
- それぞれが DICOM 適合性を主張している装置群を統合することによって実装されたシステムから期待されるべき特徴と機能の全体の集合。
- 規格への実装の適合性を評価するための試験／確認手続き。

DICOM 規格は医療情報分野に関係する。その分野内で、医用画像装置と他のシステム、他のデジタル情報、他の医療機器と相互運用を行うことが目的であるので、この規格の適用範囲は医療情報の他分野と重なりあう必要がある。しかしながら、DICOM 規格はこの分野の全体を対象とはしない。

2 引用規格

3 定義

Attribute 属性：情報オブジェクトの特性。属性は符号化体系には依存しない名前と値を持つ。

Command コマンド：ネットワークを介して情報を操作する要求。

Command Element コマンド要素：このパラメータ値を伝達するコマンドのパラメータの符号化。

Command Stream コマンドの流れ：DICOM 符号化方法を使用して DICOM コマンド要素の集合を符号化した結果。

Conformance Statement 適合性宣言：DICOM 規格を使用する特定製品の実装を記述する公式な宣言。それは、実装がサポートしている、サービスクラス、情報オブジェクト、および通信プロトコルを明記する。

Data Dictionary データ辞書：データ要素それぞれに固有なタグ、名前、値特性、および、意味論を割り当て、DICOM データ要素の登録簿。

Data Element データ要素：データ辞書の単一見出し項目として定義される情報の単位。

Data Set データ集合：属性の構造化集合として構成される交換される情報。データ集合中のそれぞれの属性値は、データ要素として表現される。

Data Stream データの流れ：DICOM 符号化体系（データ辞書に明記されたデータ要素番号および表現）を使用してデータ集合を符号化した結果。

Information Object 情報オブジェクト：一つ以上のDICOMコマンドによって作用される、現実の情報実体（例えば、CT画像、構造化報告書など）の抽象的概念。

注：この用語は PS 3.3 の中で若干参照されるが、主に PS 3.1 の中で使用される。それは、PS 3.3 で導入される公式な用語に対応する、非公式な用語である。DICOM 規格の他の全ての分冊では、この公式な用語は、情報オブジェクト定義として知られている。

Information Object Class 情報オブジェクトクラス：情報オブジェクトの公式な記述で、それはその目的とそれが所有する属性の記述を含む。それはそれらの属性に対する値は含んでいない。

注：この用語は PS 3.1 の中だけで使用される。それら、PS 3.4 で導入される公式な用語に対応する非公式な用語である。その公式な用語は、サービス−オブジェクトクラス。あるいは、もっと一般的に SOP クラスとして知られている。

Information Object Instance 情報オブジェクトインスタンス：実世界の実体の発生の表現。それはその実体が属する情報オブジェクトクラスの属性に関する値を含む。

注：この用語は PS 3.1 の中だけで使用される。それは、PS 3.4 で導入される公式な用語に対応する非公式な用語である。その公式な用語は、サービス−オブジェクトクラス。あるいは、もっと一般的に SOP インスタンスとして知られている。

Message メッセージ：二つの協同する DICOM アプリケーション間で交換されるメッセージ交換プロトコルのデータ単位。メッセージは、コマンドの流れとそれに続く任意選択のデータの流れで構成される。

Service Class サービスクラス：情報オブジェクトの特定クラスに作用する特定の DICOM コマンドを使用して、協同する DICOM アプリケーションがサポートするサービスの構造化記述。
4 記号と略語

ACSE	Association Control Service Element	アソシエーション制御サービス要素
CT	Computed Tomography	コンピュータ断層撮影装置
DICOM	Digital Imaging and Communications in Medicine	医療におけるデジタル画像と通信
HIS	Hospital Information System	病院情報システム
OSI	Open Systems Interconnection	開放型システム間相互接続
PACS	Picture Archiving and Communication Systems	画像保管通信システム
RIS	Radiology Information System	放射線部門情報システム
TCP/IP	Transmission Control Protocol/Internet Protocol	伝送制御プロトコル／インターネットプロトコル

5 DICOM 規格の目標

DICOM 規格は適合を主張している機器の相互運用性を促進する。特に、それは：

- コマンドおよび関連データの意味論に取り組む。相互作用する装置のために、装置の間で移動する情報だけではなく、装置が、コマンドおよび関連データに、どのように応答することが期待されるかに関する規格がなければならない；
- オフライン通信に必要とされる、ファイルサービス、ファイルフォーマットおよび情報ディレクトリの意味論に取り組む；
- 規格の実装の適合必要条件を明確に定義する。特に適合性宣言は、適合を主張する他の装置との間で期待される相互運用性のための機能を決定するための十分な情報を明記しなければならない。
- ネットワーク環境での運用を促進する。
- 新しいサービスの導入に順応するために構造化され、それにより将来の医学画像アプリケーションへの支援を容易にする。
- 適用可能な場合にはいつも、既存の国際規格を利用して、そしてそれ自身が国際規格のために確立された文書指針に適合している。

DICOM 規格は PACS の実装の問題解決を容易にする可能性を持っているが、この規格単独での使用だけでは PACS の全ての目標が達成されることを保証しない。この規格は、マルチベンダー環境での適合性を主張するシステムの相互運用性を促進するが、しかし、それ自体だけでは相互運用性を保証しない。

この規格は放射線医学、心臓学、および関連する分野で実施される診断医療画像に重点を置いて開発されてきた；しかしながら、臨床やその他の医療環境の中で交換される、広範囲の画像および非画像関連情報に対しても適用可能である。

図 5-1 はネットワーク（オンライン）および媒体保存交換（オフライン）通信の両方において、規格の一般的な通信モデルを示す。アプリケーションは、下記の境界のいずれかで中継されることがある：

P01-2009_j_20110311.docx

10
- 上位層サービス、それは特定の物理的ネットワーク通信サポートおよびTCP/IPのようなプロトコルからの独立性を提供する。

- 基本DICOMファイルサービス、それは特定の媒体保存フォーマットおよびファイル構造から独立した保存媒体へのアクセスを提供する。

図5-1
一般的な通信モデル
6 DICOM 規格の内容の概要

6.1 文書の構造

DICOM は、下記の複数分冊で構成される：
PS 3.1: 序文と概要（この文書）
PS 3.2: 適合性
PS 3.3: 情報オブジェクト定義
PS 3.4: サービスクラス仕様
PS 3.5: データ構造と符号化
PS 3.6: データ辞書
PS 3.7: メッセージ交換
PS 3.8: メッセージ交換のためのネットワーク通信サポート
PS 3.9: 引退した
PS 3.10: 媒体交換のための媒体保存とファイルフォーマット
PS 3.11: 媒体保存応用プロファイル
PS 3.12: 媒体交換のための媒体フォーマットと物理媒体
PS 3.13: 引退した
PS 3.14: グレースケール表示標準関数
PS 3.15: セキュリティとシステム管理プロファイル
PS 3.16: コンテンツマッピング資源
PS 3.17: 解説的情報
PS 3.18: DICOM 持続性オブジェクトへのウェブアクセス（WADO）

規格のこれらの分冊は関連しているが、独立した文書である。この節で、それぞれの分冊の簡単な説明を提供する。

6.2 PS 3.2: 適合性

DICOM 規格の PS 3.2 は、規格への適合を主張する実装が従うべき原則を定義する：

- 適合の必要条件。PS 3.2 は、適合を主張する全ての実装が満たさなければならない一般的な必要条件を規定する。それは、規格の他の分冊の適合性に関する節を参照する。

- 適合性宣言。PS 3.2 は、適合性宣言の構造を定義する。それは、適合性宣言に存在しなければならない情報を規定する。それは、規格の他の分冊の適合性に関する節を参照する。

PS 3.2 は、規格への実装の適合を評価する試験／確認手続きを規定しない。

図 6.2-1 および図 6.2-2 は、ネットワーク通信および媒体交換の双方に関する、適合性宣言の構築プロセスを図示する。適合性宣言は、下記の部分から構成される：
この実装によって認識される情報オブジェクトの集合
- この実装がサポートするサービスクラスの集合
- この実装がサポートする通信プロトコルまたは物理媒体の集合
- この実装がサポートするセキュリティ対策の集合。

DICOM 適合性宣言文書

図 6.2-1
ネットワーク適合性主張の構築プロセス
図 6.2-2
媒体適合性主張構築プロセス

6.3 PS 3.3: 情報オブジェクト定義

DICOM 規格の PS 3.3 は、デジタル医用画像および関連する情報（例えば、波形、構造化レポート、放射線治療線量など）の通信に適用可能な実世界の実体の抽象化定義を提供する多くの情報オブジェクトクラスを規定する。それぞれの情報オブジェクトクラスの定義は、その目的の記述およびそれを定義する属性で構成される。情報オブジェクトクラスは、その定義を構成する属性に対する値を含まない。

二つのタイプの情報オブジェクトが定義される：正規化および複合。

正規化情報オブジェクト定義は、表現される実世界の実体に固有の属性だけを含む。例えば、正規化オブジェクトとして定義される検査情報オブジェクトクラスは、それが実際の検査に固有であるので、検査日と検査時刻の属性を含む。しかしながら、患者名は、検査が行われた患者に固有であるが、検査自体に固有ではないので、検査情報オブジェクトクラスの属性ではない。

複合情報オブジェクトクラスは、実世界の実体に関連したしかし固有ではない属性を追加して含むことがある。例えば、複合情報オブジェクトクラスとして定義されるコンピュータ断層画像情報オブジェクトクラスは、画像に固有の属性（例えば、画像日付）および画像に関連するが固有ではない属性（例えば、患者名）の両方を含む。

複合情報オブジェクトクラスは、画像データおよび関連データを密接に関連づける必要がある画像の通信必要条件を表現するために、構造化された枠組みを提供する。
情報オブジェクトクラス定義を単純化するために、それぞれの情報オブジェクトクラスの属性は、一まとめにされている類似した属性で区別される。このような属性の組分けは独立したモジュールとして規定され、他の複合情報オブジェクトクラスによって再利用されることがある。

PS 3.3 は、実世界のモデルを、情報オブジェクト定義に反映されている対応する情報モデルと共に定義する。この規格の将来の版は、新しい機能をサポートするために、情報オブジェクトのこの集合を拡張することがある。

実世界実体の発生を表現するために情報オブジェクトインスタンスが生成される。それは、情報オブジェクトクラスの属性に対する値を含む。この情報オブジェクトインスタンスの属性値は、それが表現している実体の状態変化を正確に反映するために、時間の経過に伴って値が変化することがある。これは、サービスクラスとして定義されるサービスの特定集合を表現するために、情報オブジェクトクラスの上に、異なる基本操作を実現することによって達成される。これらのサービスクラスはこの規格の PS 3.4 で定義される。

6.4 PS 3.4: サービスクラス仕様

DICOM 規格の PS 3.4 は、多くのサービスクラスを定義する。サービスクラスは、1 以上の情報オブジェクトを、これらのオブジェクト上で実行される 1 以上のコマンドに関連づける。サービスクラス仕様は、コマンド要素に対する必要条件および生じるコマンドがどのように情報オブジェクトに適用されるかについて述べる。サービスクラス仕様は、通信サービスの提供者と利用者の双方に対する必要条件を述べる。

DICOM 規格の PS 3.4 は、全てのサービスクラスによって共有される特性、および、個々のサービスクラスへの適合性宣言がどのように構築されるかを定義する。これは、個々のサービスクラスについて詳細に記述する多くの規格としての附属書を含んでいる。

サービスクラスの例は、下記を含む:
- 保存サービスクラス
- 問合せ／取得サービスクラス
- 基本ワークリスト管理サービスクラス
- プリント管理サービスクラス。

PS 3.4 は、PS 3.3 で定義される情報オブジェクトに対して実行される操作を定義する。PS3.7 は、PS3.4 の中で記述される操作と通知を遂行するために、コマンドおよびコマンドを使用するためのプロトコルを定義する。

6.5 PS 3.5: データ構造と符号化

DICOM 規格の PS 3.5 は、DICOM アプリケーションが、DICOM 規格の PS 3.3 および PS 3.4 で定義された情報オブジェクトおよびサービスクラスの使用に起因するデータ集合情報の構築と符号化方法を定める。多くの標準画像圧縮技術（例えば、可逆および非可逆 JPEG）のサポートが明記される。

PS 3.5 は、DICOM 規格の PS 3.7 で明記されるメッセージの中で伝達されるデータの流れを構築するために必要な符号化規則を定める。このデータの流れは、データ集合を構築するデータ要素の集合から生成される。

PS 3.5 は、さらに、多くの情報オブジェクトに共通な、多くの包括的な機能の意味論を定義する。PS 3.5 は、DICOM 内で使用される国際的な文字集合に対する符号化規則を定義する。
6.6 PS 3.6: データ辞書

DICOM 規格の PS 3.6 は、交換可能媒体符号化に関して利用される要素、および DICOM によって割り当てられる固有に識別される項目のリストと共に、情報を表現することができる全ての DICOM データ要素の集積を定義する。集中化された登録簿である。

それぞれの要素に対して、PS 3.6 は下記を規定する：
- その固有のタグ、それはグループおよび要素番号から構成される
- その名前
- その値表現（文字列、整数、など）
- その値複数度（属性あたりの値の数）
- それは引退したか否か

それぞれの固有識別項目に対して、PS 3.6 は下記を規定する：
- その固有値、それは小数点によって分離された複数構成要素を持つ数値で 64 文字までに制限される
- その名前
- そのタイプ、情報オブジェクトクラス、データ転送のための符号化の定義、または周知の情報オブジェクトインスタンスのどれであるかを示す
- それは DICOM 規格のどの分冊の中で定義されているか

6.7 PS 3.7: メッセージ交換

DICOM 規格の PS 3.7 は、PS 3.8 で定義される通信サポートサービスを介して、メッセージを交換するために、医用画像環境の中でアプリケーションによって使用される、サービスおよびプロトコルの両方を明記する。メッセージは、PS3.7 で定義されるコマンドの流れとそれに続く PS3.5 で定義される省略可能なデータの流れによって構成される。

PS 3.7 は、以下を規定する：
- PS 3.4 で定義されるサービスクラスに利用可能である操作および通知（DIMSE サービス）
- PS 3.8 で規定される通信サポートによって提供されるアソシエーションを確立しそして終了する規則、および未解決のトランザクションへの影響
- コマンド要求と応答の交換を統制する規則
- コマンドの流れおよびメッセージを構築するために必要な符号化規則。

6.8 PS 3.8: メッセージ交換のためのネットワーク通信サポート

DICOM 規格の PS 3.8 は、PS 3.3、PS 3.4、PS 3.5、PS 3.6、および PS 3.7 の中で明記される、DICOM アプリケーションの間の通信を、ネットワーク環境において、サポートするために必要とされる、通信サービスおよび上位層プロトコルを明記する。これらの通信サービスおよびプロトコルは、DICOM アプリケーションの間の通信が、ネットワークを介して、効率的で協調的な方法で実行されることを保証する。
PS 3.8の中で明記される通信サービスは、OSIプレゼンテーションサービス（ISO 8822）によって提供されるサービス、およびOSIアソシエーション制御サービス要素（ACSE）（ISO 8649）の適切なサブセットである。これらは上位層サービスと呼ばれ、同位アプリケーションがアソシエーションを確立すること、メッセージを伝送すること、そしてアソシエーションを終了することを可能にする。

上位層サービスのこの定義は、TCP/IPトランスポートプロトコルと組み合わせたDICOM上層プロトコルの使用を明記する。PS 3.8で明記されるTCP/IP通信プロトコルは、DICOM規格に特有でない、汎用の通信プロトコルである。図5-1は、このプロトコルスタックを示す。

6.9 PS 3.9: 引退した（元来は、メッセージ交換のための2点間通信サポート）

DICOM規格のPS 3.9は、以前に、ACR-NEMA2.0と互換性をもつ方法で2点間通信に使用されるサービスとプロトコルを規定していた。引退している。

6.10 PS 3.10 媒体交換のための媒体保存とファイルフォーマット

DICOM規格のPS 3.10は、可搬媒体での医用画像情報の保存に関する一般的なモデルを明記する（図6.10-1を参照）。この分冊の目的は、広範な物理保存媒体上で、多様なタイプの医用画像と関連する情報の交換を可能とする枠組みを提供することである。

注： 媒体交換モデルをネットワークモデルと比較して理解するには、図5-1を参照。

PS 3.10は、以下を規定する：

- 保存媒体上に、医用画像および関連情報を保存するための階層モデル。このモデルでは、媒体保存応用プロファイルの概念が導入する。それは、媒体保存の実装が適合を主張することができるDICOM規格のアプリケーションに特有の部分集合を規定する。そのような適合性は、保存媒体の内容を書いたり、読んだり、更新したりする時に限り適用される。
- 任意の情報オブジェクトのカプセル化をサポートするDICOMファイルフォーマット；
- 暗号化された封筒の中のDICOMファイルフォーマットのカプセル化をサポートする安全なDICOMファイルフォーマット；
- 下位にある媒体フォーマットおよび物理媒体からの独立を提供するDICOMファイルサービス。

PS 3.10は、多様な媒体保存の概念を定義する：

a) 単一媒体上のファイルの集合を識別する方法

b) 特定のファイルシステム内でDICOMファイルに名前を付ける方法
図 6.10-1
DICOM 媒体通信モデル

6.11 PS 3.11: 媒体保存応用プロファイル

DICOM 規格の PS 3.11 は、実装が適合を主張することがある。DICOM 規格のアプリケーション特有の部分集合を明記する。これらのアプリケーション特有の部分集合はこのセクションで応用プロファイルと呼ばれるであろう。そのような適合宣言は、特定の臨床用途のための記憶媒体上の医療画像および関連情報の相互運用可能な交換に適用される。それは、記憶媒体上の様々なタイプの情報の交換に関して、PS 3.10 に定義されている枠組みに従う。

応用プロファイルの附属書は、次のような主要部分で構成される:

a) 応用プロファイルの名前、または関連するクラスにグループ化された応用プロファイルのリスト
b) その応用プロファイルの臨床のコンテキストの記述
c) 応用プロファイルおよび関連するオプションに対する装置役割を含む媒体保存サービスクラスの定義
d) 応用プロファイルの運用必要条件を説明する情報的な節

e) サポートされた情報オブジェクトクラスおよび関連する情報オブジェクトの仕様およびデータ転送に
使用される符号化

f) 使用される媒体フォーマットと物理媒体の節

g) 相互運用可能な媒体交換を保証するために明記する必要のある他パラメータ

h) 安全な媒体保存応用プロファイルにより使用される暗号技術を選択するセキュリティパラメータ

DICOM の構造および応用プロファイルメカニズムの設計は, 追加の情報オブジェクトクラスおよび新しい交換
媒体に対する拡張が簡単である。

注: 図 6.11-1 は, 応用プロファイルの個々の様相が DICOM 規格のさまざまな分冊にどのように写像されるかを示
す。

図 6.11-1
応用プロファイルと DICOM の分冊の間の関係

6.12 PS 3.12: 媒体交換のための媒体フォーマットと物理媒体

DICOM 規格のこの分冊は, 下記を明記することによって, 医療環境におけるアプリケーションの間の情報の相
互交換を容易にする:

a) 媒体保存モデルと特定の物理媒体と媒体フォーマットの間の関係を記述する構造。

b) 特定の物理媒体の特性および関連する媒体フォーマット。

6.13 PS 3.13: 引退した（元来は, プリント管理 2 点間通信サポート）

PS 3.13 は, 以前に, プリント管理サービスの 2 点間通信に対して使用するサービスおよびプロトコルを明記し
ていた。現在は, 引退している。
6.14 PS 3.14: グレースケール標準表示関数

PS 3.14 は、グレースケール画像の一貫性のある表示のための標準化された表示関数を規定する。この関数は、異なる表示方法（例えばモニタとプリンタ）上で、画像を一貫して提示する目的のために、特定の表示システムを校正する方法を提供する。

選択された表示関数は、人間の視覚認知に基づいている。人間の目のコントラスト感度は、表示装置の輝度範囲において疑わしくも非線形である。この規格は、人間の視覚システムの Barten モデルを利用する。

6.15 PS 3.15: セキュリティとシステム管理プロファイル

DICOM 規格の PS 3.15 は、実装が適合を主張するセキュリティおよびシステム管理プロファイルを指定する。セキュリティおよびシステム管理プロファイルは、DHCP、LDAP、TLS および ISCL のような、外部で開発された標準プロトコルを参照することによって定義される。セキュリティプロトコルは、公開キーや「スマートカード」のような、セキュリティ技術を使用することがある。データ暗号化は、様々な標準化されたデータ暗号化方法を使用することができる。

この分冊は、セキュリティポリシーの問題を扱わない。本規格は、DICOM オブジェクトの相互交換に関して、セキュリティポリシーを実装するために使用することができるメカニズムを提供しているだけである。適切なセキュリティポリシーを確立することは、施設管理者の責任である。

6.16 PS 3.16: コンテンツマッピング資源

DICOM 規格の PS 3.16 は、以下を規定する:

- DICOM 情報オブジェクトとして文書を構造化するためのテンプレート
- 情報オブジェクトで使用する符号化された用語の集合
- DICOM によって定義され維持される用語の構造化辞書
- 符号化された用語の国別の翻訳

6.17 PS 3.17: 解説的情報

DICOM 規格の PS 3.17 は、以下を規定する:

- 説明的な情報を含んでいる教育的および規範的な附属書

6.18 PS 3.18: DICOM 持続性オブジェクトへのウェブアクセス(WADO)

DICOM 規格の PS 3.18 は、DICOM 持続性オブジェクトへのアクセスの要求を HTTP URL/URI 要求として表現することができる手段を指定する。ここでの HTTP URL/URI 要求は、特定の DICOM 持続性オブジェクトへのポインタを、そのインスタンス UID の形式で含んでいる。

その要求は、さらに要求への応答として返される結果のフォーマットを規定する。

以下は例である:

1. (MIME) Content-type, 例えば、画像に対して application/dicom または image/jpeg, レポートに対して application/dicom または application/rtf または xml

2. Content-Encodings
3．HL7/CDA Level 1 としてのレポート

この規格で定義している問合せ URL のパラメータは、DICOM SCU（サービスクラス利用者）として動作する HTTP サーバが、要求されたオブジェクトを適切な DICOM SCP（サービスクラス提供者）から取得するために十分である。そこで、PS 3.4 および PS 3.7 に定められた基本的な DICOM 機能が用いられる。